亚洲国产午夜精品av在线,日韩午夜欧美精品一二三四区,国产精品久久久久久无遮挡,欧美一亚洲一级日韩一级

歡迎來到冀群(江蘇)儀器有限公司網(wǎng)站!
咨詢熱線

13236572657

當前位置:首頁  >  技術文章  >  英國 Labplant 噴霧干燥儀在奶粉中的應用

英國 Labplant 噴霧干燥儀在奶粉中的應用

更新時間:2021-11-30  |  點擊率:2387

英國 Labplant 噴霧干燥儀在奶粉中的應用

 

Labplant spray dryer tests

 

 

The milk used was reconstituted in the following way:

 

200g  milk powder

 

1.7L of tap water

 

giving 2L of milk with a measured density of 1.045 at 21’C.

 

We used a fixed flow, whatever the experiment ; pump flow set at 5, corresponding to

13.5mL/min.

 

Varying the injection temperature of the product

 

We did a first test with an injection temperature of 130’C and then a second test at 140’C.

 We saw that spray drying was achieved, apparently, comfortably at these two 

temperatures.Effectively no liquid ran along the walls of the main spray chamber, even at

130’C. This meant that we could work at 140’C or 130’C given the stipulated flow.

In theory it is preferable to work at 140’C, because the higher the temperature the better

the yield. We will try to prove this through our experiments.

 

Varying the compressed air ratio / feed flow

 

 

We worked with a flow set at 5 (13.5mL/min) and compressed air set at 3 bars

(constant air inlet valve opening).

 

In theory to increase the size of the agglomerate, it is necessary to favour the agglomeration

 mechanism over the drying process. One of the possible means is to decrease the spraying

 rate. In the case of this equipment, to decrease the spraying rate you can either decrease the

flow of compressed air through the injection nozzle (while keeping a constant pressure) or

you can decrease the pressure of the compressed air (while keeping a constant flow).

 

Therefore we tried two tests with constant air and liquid flows, varying the pressure from 2

to 3 bars.We observed the look of the powders we obtained ; it was difficult to decide just

with the naked eye, an additional granulometric(?) study would be necessary, but it did seem

that the powder obtained with 3 bars of pressure was effectively finer than that obtained with

 2 bars.

 

Research into the effective operational limits of the spray dryer

 

 

We retained the same solution of reconstituted milk.

 

At a given flow and pressure of air, we increased the flow of liquid from level 5

(13.5mL/min) to level 10 (28.8mL/min). We very quickly saw that the formation of the

spray in the atomisation tube was not good : in effect the quantity of liquid going through

the tube was too much and could not be vaporised on exiting the tube. This was why we had

some liquid that ran out of the tube, ran along the walls of the spray chamber, of the fan

chamber (cyclone?) and even in the recuperation chamber. Under these conditions the yield

of finished product would be bad.

 

QUANTITATIVE STUDY

 

 

The experiments carried out and the experiment details are given below.

 

Experiment 1 : starting from 100g/L of reconstituted milk

 

Amount of milk powder

 200g


Amount of water

  1700g


Volume of milk

2L


Density of milk

      1.045g/mL


Humidity of milk

        89.47 % mas


Injection temp (??)

  130’C


Injection flow

       13.5mL/min


Working time

  40 min


Compressed air pressure

 3 bars


Humidity of labo

     21.8 %HR

   6g vapour / m3 air

Ventilator flow

   70 m3/h


Gas exit temp

77’C


Air exit humidity

    18.8 %HR

    21.3g vapour / m3 air

Bottle size

339g


Bottle + wet milk

391.9


Bottle + dry milk

           390


 

From the experiment details we calculated the following:

 

humidity of the milk : 100 x water mass (water mass + powder mass)

 

numerical application : % humidity of the milk = 100 x 1700/(1700+200) = approx 89.5%

the mass of the wet milk we collected = 391.9 – 339 = 52.9g

 

the mass of the dry matter we collected = 390 – 339 = 51g

 

humidity of the solid = 100 x (52.9 – 51)/52.9 = approx 3.6%

 

Materials ‘balance sheet’ of the dry milk over the life of the experiment:

 

at the start : dry matter is the result of the solution to be tested

 

at the exit : dry matter of the solid that was obtained

 

Numerical application

 

a) at the start : 13.5mL/min x 1.045 g/mL x 40 min x (100-89.47)/100 = approx 59.4g

b) at the exit : 51g

 

c) solid yield = 100 x 51 / 59.4 = approx 85.9%

 

Materials ‘balance sheet’ of the water over the life of the experiment

 

b) at the start : (13.5mL/min x 1.045 g/mL x 40 min x 89.47 / 100) + 70 m3/h x 6 g/m3 x40/60 = 784.8 approx of water

 

c) at the exit : (52.9g x 3.6 /100) + (70m3/h x 21.3 g/m3 x 40/60) = approx 995.9

 

d) water yield = 100 x 995.9 / 784.8 = approx 127%

 


国产欧美久久久精品免费| 国产精品一区二区av白丝| 黄色视频网站在线观看的| 久久久国产精华液2023| 久久久久亚洲av无码专区体验| 国产精品视频网站免丝袜| 亚洲 欧美 国产 日韩 字幕| 91精品视频在线观看不卡| 日韩在线观看高清视频| 少妇一晚三次一区二区三区| 自拍偷拍亚洲熟女妇人精品| 久久久亚洲春色AV无码| 免费看黄片一区二区三区| 国产老人一区av二三区| 黑人欧美色视频在线观看| 精品亚洲456在线播放| 韩国电影办公室的在线观看| 成人黄网在线观看不卡高清| 无码av免费一区二区三区试看| 丰满人妻妇伦又伦精品a| 国产 无码 AV在线 | 国产精品肥臀一区二区三区| 国产精品不卡区在线观看| 亚洲国产高清不卡一区二区| 国产性行为视频免费观看| 啊啊啊湿了视频在线观看| 白白操一操免费在线观看| 成人精品精品视频在线播放| 92午夜福利1000集| 午夜精品久久久久久久无码| 国产精品视频一二三四区| 男女免费观看在线爽爽爽视频| 欧美日韩亚洲变态三级电影| 日日狠狠久久偷偷色按摩| 亚洲 成人 日韩 欧美| 亚洲性别爱图片小说视频| 嗯哼大肉棒插入骚逼视频| 亚洲经典三级片蜜臀av| 日本大片在线一区二区三区| 91精品国产综合久久青草 | 中国av电影一区二区三区|